Niveaux: SM PC SVT | Matière: Physique

PROF: Zakaryae Chriki | Résumé N:7

Dipôle RI

Dipôle RL : association série d'un conducteur ohmique de résistance R et d'une bobine d'inductance L et de résistance interne r.

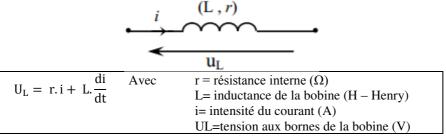
I. Bobine:

Description.

Une bobine est un dipôle passif, elle est formée d'un enroulement cylindrique, à spires jointives, d'un fil électrique recouvert par un isolant.

Symbole de la bobine :

Tension aux bornes de la bobine :



Cas particuliers

Courant continu

$$I=C^{te}$$
 et $\frac{di}{dt}=0$ donc $U_L=r.i$

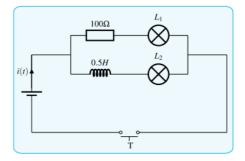
En courant continu la bobine se comporte comme un conducteur ohmique

Résistance interne négligeable r= 0

$$U_L = r.i + L.\frac{di}{dt} = L.\frac{di}{dt}$$

Influence de la bobine dans un circuit est :

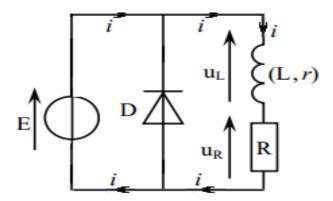
Une bobine permet de retarder l'établissement ou la rupture (annulation) du courant et ceci est dû au produit L. di



II. Etablissement de courant :

Montage:

Soit le montage électrique suivant :



Rôle de la diode en parallèle avec une bobine

- Ne laisse passer le courant que dans un seul sens
- Permet d'éviter l'apparition des étincelles dues aux surtensions aux bornes de la bobine
- Protège ainsi les composants du circuit qui sont autour de la bobine

1. Equation différentielle:

En appliquant la loi d'additivité des tensions U_R + U_L = E et les transitions

$$U_R = R.i$$
 et $i = \frac{U_R}{R}$ et $U_L = r.i + L.\frac{di}{dt}$

 $U_R = R.i \quad \text{et} \ i = \frac{U_R}{R} \ \text{et} \ U_L = r.i + L. \\ \frac{di}{dt}$ On aboutit à l'équation différentielle vérifié par une variable donnée

On pose
$$\tau = \frac{L}{Rt}$$
 et on obtient l'équation différentielle suivante : : $\left[\tau \frac{di}{dt} + i = \frac{E}{Rt}\right]$

NB:

2.Equation horaire:

La solution de l'équation différentielle s'écrit sous la forme suivante : $i(t) = Ae^{-\alpha t} + B$

tel que A, B et α des constantes que on peut les déterminer

* détermination de B et α

En reportant la solution dans l'équation différentielle :
$$-\tau \cdot \alpha A e^{-\alpha t} + A e^{-\alpha t} + B = \frac{E}{Rt}$$
 donc : $A e^{-\alpha t} (-\tau \alpha + 1) + B = \frac{E}{Rt}$

Pour que i(t) soit une solution de l'équation différentielle, il suffit que : $B = \frac{E}{Rt}$ et $-\alpha \tau + 1 = 0$ c'est à dire que $\alpha = \frac{1}{\tau}$

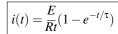
$$i(t) = Ae^{-t/\tau} + \frac{E}{Rt}$$

* Détermination de la constante A

D'après les conditions initiales à la date t = 0 l'intensité du courant dans la bobine est nulle :

 $i(0^+) = i_0 = 0$ En le reporte dans la solution précédente :

$$i(0) = A + \frac{E}{Rt} = 0$$
 $A = -\frac{E}{Rt}$ Donc la solution de l'équation différentielle s'écrit sous la forme suivante : $i(t) = \frac{E}{Rt}(1 - e^{-t/\tau})$



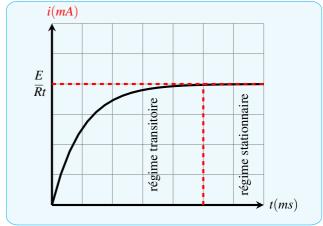
3.La representation de i=f(t):

Mathématiquement la courbe qui représente $u_C = f(t)$ est la suivante tel que à t=0 on a i(0)=0 et quand $t\longmapsto \infty$ on a $i=\frac{E}{Rt}$, pratiquement on considère $t>5\tau$ on a $i(\infty)=\frac{E}{Rt}$

La courbe présente deux régime :

Un régime transitoire : la tension i(t) varie au cours du temps .

Un régime stationnaire ou régime permanent où i(t) reste constante et égaleà



4.Dètermanition de la constante du temps τ:

On a deux méthodes:

méthode de calcul:

On calcule $i(t = \tau)$, τ est l'abscisse sur le graphe i(t) qui.

méthode graphique : on utilise la tangente à la courbe i(t) à la date t = 0 et on détermine graphiquement le point d'intersection de cette tangente avec lasymptote horizontal $i = I_0 = E/R$

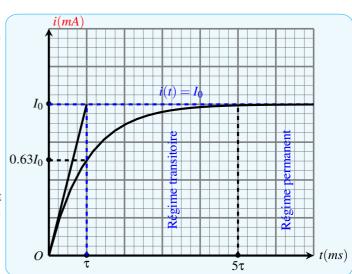
5. Unité de la constante du temps τ :

Équation de la constante du temps τ

On a : $\tau = \frac{L}{R}$ d'après l'analyse dimensionnelle :

$$[\tau] = \frac{[L]}{[R]} \Rightarrow [R] = \frac{[U]}{[I]} \Rightarrow [L] = \frac{[U]}{[I]} \cdot [t] \text{ Donc}: \quad [\tau] = [t]$$

a une dimension temporelle, son unité dans le système internationale est le seconde . τ est un indicateur de la durée du régime transitoire lors de l'établissement du courant (ou la rupture du courant)



6.L'expression de la tensuion aux bornes de la bobine

D'après la loi d'additivité des tensions on a : $E = u_L + Ri(t)$

c'est à dire :

$$u_L(t) = E - Ri(t) \Rightarrow u_L(t) = E\left(1 - \frac{r'}{R}(1 - e^{-t/\tau})\right)$$

on néglige la résistance de la bobine r devant la résistance r', on obtient R = r et on a

$$u_L(t) = E\left(1 - (1 - e^{-t/\tau})\right)$$
 donc: $u_L(t) = Ee^{-t/\tau}$

Expérimentalement lorsqu'on visualise la tension u_B aux bornes de la bobine , on obtient la courbe suivante (On néglige pas la résistance de la bobine)

III.Rupture (Annulation) de courant

D'après l'additivité des tensions, on a

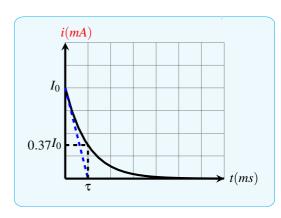
$$U_R + U_L = 0 \Rightarrow (r + Ri)i + L\frac{di}{dt} = 0 \Rightarrow Ri + L\frac{di}{dt} = 0$$

On sait que $\tau = \frac{L}{R}$, donc l'équation différentielle est :

$$\boxed{\tau \frac{di}{dt} + i = 0} \tag{6}$$

La solution de cette équation différentielle en considérant la condition initiale suivante : à t=0 et lorsqu'on ouvre l'interrupteur K , on a $i(0)=I_0$

$$i(t) = \frac{E}{Rt}e^{-t/\tau}$$



Remarque:

* Autant que τ est petite , la durée d'établissement du courant ou la rupture du courant est courte .

IV.l'énergie emmagasiné dans une bobine

Une bobine d'inductance L, traversée par un courant dont l'intensité passe de 0 à la valeur i, emmagasine une énergie :

$$\mathcal{E}_m = \frac{1}{2}Li^2 \qquad (2)$$

avec L en henry (H), i en ampère (A), et E_m en joule (J).

Expressions dans le régime permanent et le régime initiale :

i(t) : Intensité de courant

 $U_R(t)$: Tension du conducteur ohmique $U_L(t)$: Tension de la bobine

$C_{\rm L}(t)$: Tension de la boome					
	i(t)	U _R (t)	U _L (t)	Loi d'additivité des tensions	Equation différentielle
Régime	$i(t) = I_0 (1-e^{-\lambda .t})$	$U_R(t)=R.i(t)$	$U_L = r.i + L.\frac{di}{dt}$	$U_R+U_L=E$	$i. (R + r) + L. \frac{di}{dt} = E$
Initial (t=0)	i=0	U _R =0	$U_{L} = L. \frac{di}{dt}$	$U_L=E$	$L.\frac{di}{dt} = E$
Permanent $(t \rightarrow \infty)$	$I_0 = \frac{E}{R+r}$	$U_R(t)=R.I_0$	$U_L = r.I_0$	$R.I_0+r.I_0=E$	$I_{0}.(R+r) = E$
Permanent et r= 0	$I_0 = \frac{E}{R}$	$U_R(t)=R.I_0$	$U_L = 0$	$R.I_0 = E$	I ₀ .R =E